
Recurrence Rules
Construct holiday / weekend events with recurrence rules.{slider} - rstd.io/slider

Sliding Windows and Calendars

Davis Vaughan, @rstudio

{almanac} - rstd.io/almanac

Rolling Windows Time-Aware Sliding

Expanding Windows

Familiar Syntax

Period-Blocked Sliding

lubridate Extensions

{slider} + {almanac} = ❤

Slide variants apply a function along sequential windows of a vector.

Useful for moving averages!

Set .before = Inf to use an expanding window.
Useful for cumulative functions!

slide(, fn, .before = 1)

fn()

fn()

fn()

fn()

slide(, fn, .before = Inf)

fn()

fn()

fn()

fn()

Variants such as:

slide_dbl(), slide_dfr()

Multiple inputs with:

slide2(.x, .y), pslide(.l)

If you’ve used purrr,

you’ll feel at home
with slide!

Respect the “gaps” in your time series by supplying a secondary index.

slide_index(, , fn, .before = days(1))

1
2
4
5

fn()

fn()

fn()

fn()

Looking back 1 day creates a
range of [3, 4]. Since day 2

isn’t in the range, it isn’t

included.

With .complete = TRUE, this partial window won’t be evaluated.

Slide in rolling period chunks to summarize at different frequencies.

fn()

fn()

fn()

Just January

January and February

February and March

slide_period(, , fn, .before = 1, .period = “month”)

Jan-01
Feb-01
Feb-02
Mar-01

Schedules
Combine individual rules into comprehensive schedules.

slide_index(, , fn, .before = one_day)

Thur
Fri
Mon
Tues

fn()

fn()

fn()

fn()

slide_index(, , fn, .before = one_bday)

Thur
Fri
Mon
Tues

fn()

fn()

fn()

fn()

Looking for a range of [Sun, Mon], incorrect!

Correctly constructs business ranges of [Thur, Fri], [Fri, Mon], etc.

Slide according to custom business schedule rules.

one_bday <- bdays(1, on_weekends)

one_day <- days(1)

Construct business day period objects. Use them to step by irregular periods!

on_labor_day <- yearly() %>%
 recur_on_ymonth("September") %>%

 recur_on_wday("Monday", nth = 1)

Start with a

base frequency

Add recurrence conditions

+ one_day = Fri Sat

Mon+ one_bday = Fri

alma_in(
 c("2019-09-02", "2019-09-03"),
 on_labor_day
)

#> [1] TRUE FALSE

Is a date in the recurrence set?

on_weekends <- weekly() %>%

 recur_on_weekends()

sch_business <- schedule() %>%

 sch_rrule(on_labor_day) %>%

 sch_rrule(on_weekends) %>%

 sch_merge(hldy_christmas())

Prebuilt holidays

friday <- as.Date(“2019-08-30”)

alma_step(friday, n = 1, sch_business)
#> [1] "2019-09-03"

Step over the weekend
and Labor Day to Tuesday

Animations use .before = 2.

Recurrence Rules
Construct holiday / weekend events with recurrence rules.{slider} - rstd.io/slider

Sliding Windows and Calendars

Davis Vaughan, @rstudio

{almanac} - rstd.io/almanac

Rolling Windows Time-Aware Sliding

Expanding Windows

Familiar Syntax

Period-Blocked Sliding

lubridate Extensions

{slider} + {almanac} = ❤

Slide variants apply a function along sequential windows of a vector.

Useful for moving averages!

Set .before = Inf to use an expanding window.
Useful for cumulative functions!

slide(, fn, .before = 1)

fn()

fn()

fn()

fn()

slide(, fn, .before = Inf)

fn()

fn()

fn()

fn()

Variants such as:

slide_dbl(), slide_dfr()

Multiple inputs with:

slide2(.x, .y), pslide(.l)

If you’ve used purrr,

you’ll feel at home
with slide!

Respect the “gaps” in your time series by supplying a secondary index.

slide_index(, , fn, .before = days(1))

1
2
4
5

fn()

fn()

fn()

fn()

Looking back 1 day creates a
range of [3, 4]. Since day 2

isn’t in the range, it isn’t

included.

With .complete = TRUE, this partial window won’t be evaluated.

Slide in rolling period chunks to summarize at different frequencies.

fn()

fn()

fn()

Just January

January and February

February and March

slide_period(, , fn, .before = 1, .period = “month”)

Jan-01
Feb-01
Feb-02
Mar-01

Schedules
Combine individual rules into comprehensive schedules.

slide_index(, , fn, .before = one_day)

Thur
Fri
Mon
Tues

fn()

fn()

fn()

fn()

slide_index(, , fn, .before = one_bday)

Thur
Fri
Mon
Tues

fn()

fn()

fn()

fn()

Looking for a range of [Sun, Mon], incorrect!

Correctly constructs business ranges of [Thur, Fri], [Fri, Mon], etc.

Slide according to custom business schedule rules.

one_bday <- bdays(1, on_weekends)

one_day <- days(1)

Construct business day period objects. Use them to step by irregular periods!

on_labor_day <- yearly() %>%
 recur_on_ymonth("September") %>%

 recur_on_wday("Monday", nth = 1)

Start with a

base frequency

Add recurrence conditions

+ one_day = Fri Sat

Mon+ one_bday = Fri

alma_in(
 c("2019-09-02", "2019-09-03"),
 on_labor_day
)

#> [1] TRUE FALSE

Is a date in the recurrence set?

on_weekends <- weekly() %>%

 recur_on_weekends()

sch_business <- schedule() %>%

 sch_rrule(on_labor_day) %>%

 sch_rrule(on_weekends) %>%

 sch_merge(hldy_christmas())

Prebuilt holidays

friday <- as.Date(“2019-08-30”)

alma_step(friday, n = 1, sch_business)
#> [1] "2019-09-03"

Step over the weekend
and Labor Day to Tuesday

Animations use .before = 2.

{slider} - rstd.io/sliderRolling & Expanding Windows

Slide variants apply a function along sequential windows of a vector.

Useful for moving averages!

fn()

fn()

fn()

fn()

slide(, fn, .before = 1)

.before = 2

.before = Inf

Looking back 1 day creates a

range of [3, 4]. Since day 2

isn’t in the range, it isn’t

included.

Respect the “gaps” in your time series by supplying a secondary index.

{slider} - rstd.io/sliderTime-Aware Sliding

slide_index(, , fn, .before = days(1))
1
2
4
5

fn()

fn()

fn()

fn()

.before = 2

{almanac} - rstd.io/almanacRecurrence Rules

Construct holiday / weekend events with recurrence rules.

on_labor_day <- yearly() %>%
 recur_on_ymonth("September") %>%

 recur_on_wday("Monday", nth = 1)

Start with a

base frequency

Add recurrence conditions

alma_in(
 c("2019-09-02", "2019-09-03"),
 on_labor_day
)

#> [1] TRUE FALSE

Is a date in the recurrence set?

{almanac} - rstd.io/almanaclubridate Extensions

on_weekends <- weekly() %>%

 recur_on_weekends()

one_bday <- bdays(1, on_weekends)

one_day <- days(1)

Construct business day period objects. Use them to step by irregular periods!

+ one_day = Fri Sat

Mon+ one_bday = Fri

{slider} - rstd.io/slider

{almanac} - rstd.io/almanac

@dvaughan32

slides - github.com/DavisVaughan/rstudio-conf-2020

