Sliding Windows and Calendars

{slider} - rstd.io/slider

Rolling Windows

Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!

slide(, fn, .before = 1) ——> @ —
fn()
s

With .complete = TRUE, this partial window won’t be evaluated. -

Expanding .
Rolling .

1 2 3 4 5 6 7 8 9 10

Expanding Windows

Set .before = Inf to use an expanding window.
Useful for cumulative functions!

slide(, fn, .before = Inf) —— @ —_—
fn()

Time-Aware Sliding

Respect the “gaps” in your time series by supplying a secondary index.

slide_index(,

g~ DN =

, fn, .before = days(1)) ——
Looking back 1 day creates a
range of [3, 4]. Since day 2

fm[])rJg
isn’t in the range, it isn’t

f”(@) @ e R,
fn()
e H

slide_index() H

X: a b C d o f g h i J
Index: 1 2 4 5 6 7 9 10 11 13

Familiar Syntax

Variants such as:

If you’ve used purrr, slide_dbl(), slide_dfr()
you’ll feel at home

with slide! Multiple inputs with:

slide2(.x, .y), pslide(.1l)

Period-Blocked Sliding

Slide in rolling period chunks to summarize at different frequencies.

slide_period(, , fn, .before = 1, .period = “month”) —>

.Fn(@) T ——— Just January

T —— January and February
fn() B S February and March
fn()

Nov -
Jan

21 91 ©2 ©5 091 ©1 ©5 01 01 30 10 02
Feb Mar May Jun Sep Oct Nov Dec Feb

Davis Vaughan, @rstudio

{almanac} - rstd.io/almanac

Recurrence Rules

Construct holiday / weekend events with recurrence rules.

Start with a

? base frequenc
on_labor_day <- yearly() %>% RIS alma_in(

recur_on_ymonth("September"”) %>% c("2019-09-02", "2019-09-03"),
recur_on_wday ("Monday”, nth = 1) on_labor_day

Is a date in the recurrence set?

)

Add recurrence conditions #> [1] TRUE FALSE

Schedules

Combine individual rules into comprehensive schedules.

on_weekends <- weekly() %>%
recur_on_weekends()

friday <- as.Date(“2019-08-30")

alma_step(friday, n = 1, sch_business)

sch_business <- schedule() %>% #> [1] "2019-09-03"
sch_rrule(on_labor_day) %>% ' : :
sch_rrule(on_weekends) %>%

sch_merge(hldy_christmas())

Step over the weekend

g)) and Labor Day to Tuesday
A Prebuilt holldays

lubridate Extensions

Construct business day period objects. Use them to step by irregular periods!
o ,
one_day <- days(1) lubridate Fri + one_day Sat

one_bday <- bdays(1l, on_weekends)

Fri + one_bday

{slider} + {almanac} = ¥

Slide according to custom business schedule rules.

fn (@)
fn(®) -

, fn, .before = one_day) —> fn(@)

Mon

Looking for a range of [Sun, Mon], incorrect!

slide_index(,

slide_index(, , fn, .before

(@)
2
one_bday) — fn (@)
©.8

Correctly constructs business ranges of [Thur, Fril], [Fri, Mon], etc.

Animations use .before =

2.

Sliding Windows and Calendars

{slider} - r
Rolling Windows

Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!

slide(, fn, .before = 1) ——> @ - >
fn()
-8

With .complete = TRUE, this partial window won’t be evaluated. -

Expanding . slide_index()
Rolling .
1 2 3 4 5 6 7 8 9 10

Expanding Windows Perg

Set .before = Inf to use an expanding window.
Useful for cumulative functions!

slide(, fn, .before = Inf) —— @ —_—
fn()

Familiar Syntax

Variants such as:

Feb Mar May Jun Sep

slide2(.x, .y), pslide(.1l)

pe series by supplying a secog

If you’ve used purrr, slide_dbl(), slide_dfr()
you’ll feel at home ¥I o1 02 05 01 o1 05
with slide! Multiple inputs with:

01 01
Oct Nov

Davis Vaughan, @rstudio

{almanac} - rstd.io/almanac
Recurrence Rules

ct holiday / weekend events with recurrence rules.

Start with a Is a date in the recurrence set?
? base frequenc
early() %>% < Y alma_in(
Onth("September”) %>% c("2019-09-02", "2019-09-03"),
day("Monday”, nth — 1)) On_labor_day
Add recurrence conditions #> [1] TRUE FALSE

Schedules

Combine individual rules into comprehensive schedules.

on_weekends <- weekly() %>% friday <- as.Date(“2019-08-30")
recur_on_weekends()
alma_step(friday, n = 1, sch_business)
sch_business <- schedule() %>% #> [1] "2019-09-03"
sch_rrule(on_labor_day) %>% ' ‘ :
sch_rrule(on_weekends) %>% :
sch_merge (hldy_christmas()) Step over the weekend
and Labor Day to Tuesday

g Prebuilt holidays

lubridate Extensions

Construct business day period objects. Use them to step by irregular periods!

Sat

one_day <- days(1) Fri + one_day

one_bday <- bdays(1l, on_weekends) Fri + one_bday

{slider} + {almanac} = ¥

Slide according to custom business schedule rules.

(@)
WO) -

, fn, .before = one_day) —> fn(@)

Mon

poking for a range of [Sun, Mon], incorrect!

2_index(

’

(@

. 2

slide_index(, , fn, .before = one_bday) ——— fn(@)
©.8

Correctly constructs business ranges of [Thur, Fril], [Fri, Mon], etc.

Animations use .before =

2.

Rolling & Expanding Windows {slider} - rstd.io/slider

Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!

@ f”<®> —
slide(® fn, .before = 1) E— S :
- fn<@> -
(S
Expanding .
.before = Inf
Rolling .
.before = 2

1 2 3 = 5 6 / 8 9 10

Familiar Syntax

Variants such as:

If you’ve used purrr, slide_dbl(), slide_dfr()
you’ll feel at home
with slide! Multiple inputs with:

slide2(.x, .y), pslide(.l)

Time-Aware Sliding

Respect the “gaps” 1n your time series by supplying a secondary index.

slide_index(

(I B

1

2

4
>

, fn, .before = days(1)) —_—

slide() =
slide_index() =

X:
Index:

.before = 2

d

10

{slider} - rstd.io/slider

Looking back 1 day creates a
range of [3, 4]. Since day 2
isn’t 1n the range, 1t isn’t

included.
1]
11 13

Recurrence RU]_eS {almanac} - rstd.io/almanac

Construct holiday / weekend events with recurrence rules.

Start with a

base frequency Is a date 1n the recurrence set?
on_labor_day <- yearly() %>% alma_in(
recur_on_ymonth("September”) %>% c("2019-09-02", "2019-09-03"),

recur_on_wday("Monday”, nth = 1) on_labor_day

)
#> [1] TRUE FALSE

e Add recurrence conditions

1ubridate EXtenSiOnS {almanac} - rstd.io/almanac

on_weekends <- weekly() %>%
recur_on_weekends ()

Construct business day period objects. . Use them to step by irregular periods!
one_day <- days(1l) ﬁﬁ, Fri + one_day = Sat

’ Fri + one_bday =
one_bday <- bdays(1l, on_weekends) ILJt)r1(jEit€3 = -bday Mon

s“)d\o

slide_index(

slide_index(

{slider} + {almanac} = ¥

Slide according to custom business schedule rules.

(Thur))

Fri
Mon

@000 @009

S\ Tues J

(Thur))

Fri
Mon

S\ Tues J

, fn,

, fn,

.before

.before

one_day)

one_bday)

-
N/

{slider} - rstd.io/slider

{almanac} - rstd.io/almanac

slides - github.com/DavisVaughan/rstudio-conf-2020

YW @dvaughan32

