Sliding Windows and Calendars
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Rolling Windows

Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!
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With .complete = TRUE, this partial window won’t be evaluated. -
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Expanding Windows

Set .before = Inf to use an expanding window.
Useful for cumulative functions!
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fn( )

Time-Aware Sliding

Respect the “gaps” in your time series by supplying a secondary index.
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Familiar Syntax

Variants such as:

If you’ve used purrr, slide_dbl(), slide_dfr()
you’ll feel at home

with slide! Multiple inputs with:

slide2(.x, .y), pslide(.1l)

Period-Blocked Sliding

Slide in rolling period chunks to summarize at different frequencies.

slide_period( , , fn, .before = 1, .period = “month”) —>
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Recurrence Rules

Construct holiday / weekend events with recurrence rules.

Start with a

? base frequenc
on_labor_day <- yearly() %>% RIS alma_in(

recur_on_ymonth("September"”) %>% c("2019-09-02", "2019-09-03"),
recur_on_wday ("Monday”, nth = 1) on_labor_day

Is a date in the recurrence set?

)

Add recurrence conditions #> [1] TRUE FALSE

Schedules

Combine individual rules into comprehensive schedules.

on_weekends <- weekly() %>%
recur_on_weekends()

friday <- as.Date(“2019-08-30")

alma_step(friday, n = 1, sch_business)

sch_business <- schedule() %>% #> [1] "2019-09-03"
sch_rrule(on_labor_day) %>% ' : :
sch_rrule(on_weekends) %>%

sch_merge(hldy_christmas())

Step over the weekend

g ) ) and Labor Day to Tuesday
A Prebuilt holldays

lubridate Extensions

Construct business day period objects. Use them to step by irregular periods!
o ,
one_day <- days(1) lubridate Fri + one_day Sat

one_bday <- bdays(1l, on_weekends)

Fri + one_bday

{slider} + {almanac} = ¥

Slide according to custom business schedule rules.

fn (@)
fn(®) -

, fn, .before = one_day) —> fn(@)

Mon

Looking for a range of [Sun, Mon], incorrect!

slide_index( ,

slide_index( , , fn, .before
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2
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Correctly constructs business ranges of [Thur, Fril], [Fri, Mon], etc.

Animations use .before =

2.
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Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!
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With .complete = TRUE, this partial window won’t be evaluated. -
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Expanding Windows Perg

Set .before = Inf to use an expanding window.
Useful for cumulative functions!

slide( , fn, .before = Inf) —— @ —_—
fn( )

Familiar Syntax

Variants such as:
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Recurrence Rules

ct holiday / weekend events with recurrence rules.

Start with a Is a date in the recurrence set?
? base frequenc
early() %>% < Y alma_in(
Onth("September”) %>% c("2019-09-02", "2019-09-03"),
day("Monday”, nth — 1) ) On_labor_day
Add recurrence conditions #> [1] TRUE FALSE

Schedules

Combine individual rules into comprehensive schedules.

on_weekends <- weekly() %>% friday <- as.Date(“2019-08-30")
recur_on_weekends()
alma_step(friday, n = 1, sch_business)
sch_business <- schedule() %>% #> [1] "2019-09-03"
sch_rrule(on_labor_day) %>% ' ‘ :
sch_rrule(on_weekends) %>% :
sch_merge (hldy_christmas()) Step over the weekend
and Labor Day to Tuesday

g .............................. Prebuilt holidays

lubridate Extensions

Construct business day period objects. Use them to step by irregular periods!

Sat

one_day <- days(1) Fri + one_day

one_bday <- bdays(1l, on_weekends) Fri + one_bday

{slider} + {almanac} = ¥

Slide according to custom business schedule rules.
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slide_index( , , fn, .before = one_bday) ——— fn(@)
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Correctly constructs business ranges of [Thur, Fril], [Fri, Mon], etc.

Animations use .before =

2.




Rolling & Expanding Windows {slider} - rstd.io/slider

Slide variants apply a function along sequential windows of a vector.
Useful for moving averages!
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Familiar Syntax

Variants such as:

If you’ve used purrr, slide_dbl(), slide_dfr()
you’ll feel at home
with slide! Multiple inputs with:

slide2(.x, .y), pslide(.l)



Time-Aware Sliding

Respect the “gaps” 1n your time series by supplying a secondary index.
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range of [3, 4]. Since day 2
isn’t 1n the range, 1t isn’t
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Construct holiday / weekend events with recurrence rules.

Start with a

base frequency Is a date 1n the recurrence set?
on_labor_day <- yearly() %>% alma_in(
recur_on_ymonth("September”) %>% c("2019-09-02", "2019-09-03"),

recur_on_wday("Monday”, nth = 1) on_labor_day

)
#> [1] TRUE FALSE

e Add recurrence conditions
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on_weekends <- weekly() %>%
recur_on_weekends ()

Construct business day period objects. . Use them to step by irregular periods!
one_day <- days(1l) ﬁﬁ, Fri + one_day = Sat

’ Fri  + one_bday =
one_bday <- bdays(1l, on_weekends) ILJt)r1(jEit€3 = -bday Mon

s“)d\o
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Slide according to custom business schedule rules.
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